Artificial Immune Clonal Selection Classification Algorithms for Classifying Malware and Benign Processes Using API Call Sequences
نویسندگان
چکیده
Machine learning is an important field of artificial intelligence in which models are generated by extracting rules and functions from large datasets. Machine learning includes a diversity of methods and algorithms such as decision trees, lazy learning, knearest neighbors, Bayesian methods, Gaussian processes, artificial neural networks, support vector machines, kernel algorithms, and artificial immune systems (AIS). AIS are computation tools that emulate processes and mechanisms of the biological immune system. AIS use the learning, memory, and optimization capabilities of the immune system to develop computational algorithms for function optimization, pattern recognition, novelty detection, and process control, and classification. There are four main sub fields of research that have emerged in AIS cantered on prominent immunological theories; negative selection algorithms, immune network algorithms, danger theory algorithms, and clonal selection algorithms. In this paper, we will analyze API call sequence of a process to classify it as benign or malicious. We have collected API call traces of real malware and benign processes running on Windows operating system. We will employ eight commonly used clonal selection algorithms: AIRS1, AIRS2, AIRS2 Parallel, CLONALG, CSCA, IMMUNOS-1, IMMUNOS -81, and IMMUNOS -99. We evaluate the accuracy of these algorithms for classifying between malware and benign processes using API call sequences.
منابع مشابه
A Sense of 'Danger' for Windows Processes
The sophistication of modern computer malware demands run-time malware detection strategies which are not only efficient but also robust to obfuscation and evasion attempts. In this paper, we investigate the suitability of recently proposed Dendritic Cell Algorithms (DCA), both classical DCA (cDCA) and deterministic DCA (dDCA), for malware detection at run-time. We have collected API call trace...
متن کاملA multi-task learning model for malware classification with useful file access pattern from API call sequence
Based on API call sequences, semantic-aware and machine learning (ML) based malware classifiers can be built for malware detection or classification. Previous works concentrate on crafting and extracting various features from malware binaries, disassembled binaries or API calls via static or dynamic analysis and resorting to ML to build classifiers. However, they tend to involve too much featur...
متن کاملImplementation of a Security Model for Malware Based on Artificial Immune System
This research discusses intrusion detection systems based on computer networks and a model for the detection of malware using artificial immune system (AIS). The SIA has three main theories: the clonal selection, negative selection and network theory. This work used the ClonalG algorithm developed by Castro & Timmis (2002) [5] and implemented in Weka 3.6.4 for the intrusions detection in the KD...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملMaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Models (Extended Version)
As Android becomes increasingly popular, so does malware targeting it, this motivating the research community to propose many different detection techniques. However, the constant evolution of the Android ecosystem, and of malware itself, makes it hard to design robust tools that can operate for long periods of time without the need for modifications or costly re-training. Aiming to address thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010